鎂合金血管支架能夠被人體完全降解吸收,可以避免金屬支架或者藥物洗脫所導致的再狹窄和血栓等問題,因而在全球范圍內吸引了廣泛的關注。但是因為鎂合金塑性較差,冷拉拔制備的血管支架用微管在成型過程中易發生斷裂現象。而無模拉拔可以提供局部加熱,能提高鎂合金的塑性變形能力,避免鎂合金微管在冷拉拔過程中出現的斷裂的問題,進而獲得較大的橫截面減縮率。此外,使用無模拉拔還可以實現微管晶粒組織細化。然而,由于無模拉拔通過局部加熱和局部變形實現,當前對無模拉拔過程中鎂合金管材的動態再結晶機制仍不清晰。
最近,日本東京大學的Tsuyoshi Furushima教授課題組利用連續觀察的方式對無模拉拔管材在變形區域的動態再結晶機制進行研究,表明在非恒定溫度場和非恒定應變速率場的情況下,鎂合金可以通過{10-12}拉伸孿晶實現快速晶粒細化。當初始晶粒尺寸較大時,大量{10-12}拉伸孿晶在晶粒內部形成:(1) {10-12}孿晶在晶粒內部快速長大合并,形成亞晶界(2~5°)和小角度晶界(5~15°);(2)在{10-12}孿晶內部會產生{10-12}-{10-12}二次孿晶,進一步細化晶粒。因位錯累計,孿晶內部在后續變形過程中也會形成亞晶界(2~5°)和小角度晶界(5~15°),誘導發生連續動態再結晶。本研究明確了{10-12}孿晶在動態再結晶過程中所起的作用,為無模拉拔管材的組織控制提供依據。
本文重點研究了ZM21鎂合金管材在{10-12}拉伸孿晶誘導動態再結晶機制,結果如圖1所示。在塑性變形開始前,管材受局部溫度場的影響,發生靜態再結晶。發生靜態再結晶后,管材仍保持基面與厚度方向平行。在塑性變形階段,晶粒內部產生大量{10-12}拉伸孿晶。隨著塑性變形的進行,{10-12}拉伸孿晶迅速長大,一方面與相鄰的孿晶合并而形成亞晶界和小角度晶界,另一方面也可以在孿晶層片內部繼續產生{10-12}-{10-12}二次拉伸孿晶。經過無模拉拔后,管材晶粒尺寸得到充分細化,從19.98 μm減小至6.27 μm,如圖2所示。

圖1 無模拉拔過程中組織演化(b: 345 ℃;?c: 350 ℃;?d: 350 ℃;?e: 320 °C, 0.08 s-1, 0.12;?f: 300 °C, 0.11 s-1, 0.31;?g: 270 °C, 0.06 s-1, 0.48)

圖2 無模拉拔過程中管材位置1-7的晶粒尺寸
因{10-12}拉伸孿晶在塑性變形過程中會迅速長大合并,通常認為{10-12}孿晶無法有效細化晶粒,孿晶誘導動態再結晶的報道也多與{10-11}壓縮孿晶有關。但是在熱變形過程中,{10-12}-{10-12}二次拉伸孿晶的產生意味著{10-12}拉伸孿晶也可以作為一種晶粒細化機制,有效的減小晶粒尺寸,如圖3所示。隨著塑性變形的進行,位錯在孿晶界附近的堆積導致{10-12}所特有的87°晶界不斷發生變化,取向差變為75~90°。除了導致孿晶界取向差的改變,孿晶內部位錯的開動也會進一步導致在孿晶界附近產生亞晶界和小角度晶界,進而導致再結晶機制從{10-12}孿晶誘導動態再結晶轉為連續動態再結晶,最終使無模拉拔管材內存呈現混合晶粒組織。

圖3 孿晶界取向差在熱變形過程中的變化
綜上所述,本研究利用連續觀察的方法研究無模拉拔過程中的動態再結晶機制,明確了熱變形過程中{10-12}拉伸孿晶在動態再結晶過程中所起作用,為無模拉拔管材的組織調控和性能優化提供理論依據,同時也為無模拉拔管材在血管支架上的應用提供基礎。
該文章發表在《Journal of Magnesium and Alloys》2022年第10卷第3期:
[1] Peihua Du, Shusaku Furusawa, Tsuyoshi Furushima*. Continuous observation of twinning and dynamic recrystallization in ZM21 magnesium alloy tubes during locally heated dieless drawing [J]. Journal of Magnesium and Alloys, 2022, 10(3):730-742.
相比于冷拉拔,無模拉拔可以實現較大的橫截面減縮率,因而在制備血管支架用鎂合金微管的過程中顯示出巨大的優勢。但是,因為無模拉拔是在局部加熱和局部變形的條件下實現,而當前依舊不了解鎂合金管材在無模拉拔過程中的組織演化機制,進而無法有效控制成品管的組織。為了實現組織調控,本研究通過連續觀察的方式對無模拉拔管材的組織演化規律進行研究。結果表明無模拉拔過程中發生了靜態再結晶和動態再結晶兩個過程。靜態再結晶發生在塑性變形之前。隨著拉拔速率的提升,動態再結晶發生變化:當拉拔速度為0.02 mm/s時,變形機制為孿晶-位錯滑移主導,{10-12}拉伸孿晶產生并改變晶格取向以開動位錯;當拉拔速度為2 mm/s時,晶粒內部產生大量{10-12}拉伸孿晶,因位錯累計孿晶界不斷改變取向差,進而導致晶粒細化;當拉拔速率為5 mm/s時,晶粒細化機制主要為連續動態再結晶。這一現象表明,鎂合金管材在無模拉拔過程的動態再結晶機制不僅受溫度影響,還受拉拔速度影響。
Compared to cold drawing, dieless drawing has shown great potential for manufacturing biodegradable Mg alloy microtubes due to the large reduction in area acquired in a single pass. However, owing to the local heating and local deformation, the deformation mechanism during dieless drawing is not clear, and thus causing difficulties in controlling the microstructure of dieless drawn tubes. For the purpose of acquiring a desired microstructure, in this study the deformation mechanism of ZM21 Mg alloy tube was clarified by conducting continuous observation of the microstructural evolution during dieless drawing. The results show that both SRX and DRX occurred during dieless drawing. SRX occurred before the plastic deformation to soften dieless drawn tubes. With increase of feeding speed, the deformation mechanism changed accordingly: (1) At the low-speed of 0.02 mm/s, the deformation mechanism was dominated by twin-slip sliding, during which {10–12} tension twins were generated inside grains to accommodate the plastic deformation by changing the crystal orientation. (2) At the intermediate-speed of 2 mm/s, a twin-DRX process related to {10–12} tension twin was observed, which was characterized by the generation of abundant {10–12} tension twins and the evolution of misorientation angle of {10–12} tension twins. Moreover, the transformation from twin-DRX to CDRX can be observed at the late stage of plastic deformation, which was attributed to the inhomogeneous conditions of dieless drawing. (3) At the high-speed of 5 mm/s, a CDRX process was observed, during which grain boundary sliding and grain tilting were observed, in addition to the gradual rotation of subgrains. These results show that during dieless drawing, DRX is not only a temperature-dependent phenomenon, but also influenced by the variation of feeding speed.
第一作者/通訊作者簡介:
杜佩樺(第一作者),博士,鄭州大學講師,從事金屬塑性加工的研究。
Tsuyoshi Furushima(通訊作者),博士/副教授,東京大學機械工程學院。從事金屬微成型的研究。
圖文編輯:杜佩樺?鄭州大學
來源:JMACCMg